Abstract

Previous studies have shown that N-methyl-D-aspartate, the formation of free radicals and poly(ADP-ribose) polymerase are related to methamphetamine-induced neurotoxicity. This study was designed to investigate the involvement of oxidative stress in methamphetamine-induced self-injurious behavior in mice. In this study, methamphetamine (20 mg/kg) induced continuous self-injurious behavior in six of seven mice. N-methyl-D-aspartate-receptor antagonists (MK801 and 3-((R)-2-carboxypiperazin-4-yl) propyl-1-phosphonic acid) significantly attenuated this methamphetamine-induced self-injurious behavior. These results suggest that the activation of N-methyl-D-aspartate receptors is involved in methamphetamine-induced self-injurious behavior. Furthermore, we found that the nonselective nitric oxide synthase inhibitor l-N-nitro-L-arginine methyl ester hydrochloride and the neuronal nitric oxide synthase inhibitor 7-nitroindazole, but not the inducible nitric oxide synthase inhibitor aminoguanidine, the free-radical inhibitors fullerene and 3-methyl-1-phenyl-2-pyrazolin-5-one-186, or the poly(ADP-ribose) polymerase inhibitor benzamide, significantly attenuated methamphetamine-induced self-injurious behavior. The present results show that oxidative stress, which is mediated by the activation of neuronal nitric oxide synthase, is associated with methamphetamine-induced self-injurious behavior. These findings may help us to better understand the clinical phenomenon of self-injurious behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call