Abstract

Sun exposure is clearly implicated in premature skin ageing and neoplastic development. These features are exacerbated in patients with Xeroderma pigmentosum (XP), a hereditary disease associated at the cellular level with DNA repair defects and a low catalase activity. The implications of oxidative stress in the defects and cancer proneness of XP skin cells (keratinocytes, fibroblasts) are multiple and remain unclear. They were investigated here at the level of a single fibroblast by an electrochemical method based on microelectrodes we have developed previously. These microelectrodes permit a real-time quantification and identification of superoxide and nitric oxide derivatives (H2O2, ONOO-, NO*, NO2-) released by a living cell following its stimulation. Then, the oxidative bursts produced by fibroblasts from normal strains were compared with those of fibroblasts from several XP group A (XPA) and XP group D (XPD) strains. All XPA and XPD strains provided responses of higher amplitude and duration than controls. The XP specific oxidative response could not be correlated with DNA repair ability since the transduction of XPD strains with the wild-type XPD gene did not modify their production of reactive oxygen and nitrogen species. The nature of these species was investigated and revealed that cancer prone XPD fibroblasts produced higher amounts of O2*- and H2O2 and lower amounts of NO* and ONOO than normal fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.