Abstract

Oxidative stress is a pathophysiological state that arises due to an imbalance created between ROS generation and the antioxidant potential of the host cell. Transfusion- dependent beta-thalassemia major patients are at high risk of cellular and molecular damages induced by ROS mainly due to iron overload caused by repetitive blood transfusion. To analyze oxidative stress status levels in β-thalassemia patients. To analyze the expression profile of enzymatic (NOS2, OGG1, HuR, SOD2) and non-enzymatic (VDR) redox regulators in β-thalassemia patients. To assess polymorphism in VDR (rs2228570) and NOS2 (rs944725) in β-thalassemia patients. To analyze serum vitamin D levels of β-TM patients compared to healthy individuals. The present case-control study aimed to identify Vitamin D levels in the serum of β-thalassemia patients and compared it with healthy subjects. The study further analyzed VDR FOKI (rs2228570) polymorphism through ARMS-PCR. Expression profiling of VDR, anti-oxidant enzyme (SOD2 and GPx), and their respective regulator (HuR and NrF2) transcripts was done by the 2-ΔΔCt method. The study reports that there is no a significant difference between the Vitamin D levels among healthy and patients. VDR polymorphism analysis (rs2228570) demonstrates that although the C allele is prevalent in the study cohort, the frequency of the T allele is comparatively higher in β-thalassemia patients as compared to healthy subjects. Furthermore, patients express lower levels of anti-oxidant enzymes despite having increased oxidative stress. The study reports that β-thalassemia patients are at higher risk of cellular and molecular damages induced by oxidative stress and their associated pathologies inefficient enzymatic and non-enzymatic anti-oxidant defense systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call