Abstract

Soils are both a sink and a pathway of plastic wastes, but there is a great lack of knowledge regarding their impacts on soil biota. To tackle the mechanisms of toxicity of these contaminants to soil invertebrates, earthworms (Eisenia fetida Savigny, 1826) were exposed during 28days to different concentrations of low-density polyethylene microplastics (62, 125, 250, 500 and 1000mg MPs kg-1 soildw) with sizes ranging between 250 and 1000μm, in an artificial soil. The ecotoxicological responses were evaluated by analysing various oxidative stress biomarkers (catalase, glutathione S-transferase and thiobarbituric acid reactive substances), a biomarker of energy metabolism (lactate dehydrogenase) and overall organism molecular changes by Fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance (NMR) analyses. Significant effects resulting from an unbalanced oxidative stress system, expressed in terms of thiobarbituric acid reactive substances levels were recorded on earthworms exposed at the three highest concentrations tested. Despite that, no significant changes were recorded on the molecular profiles of earthworms by FTIR-ATR. NMR analysis pointed out for differences from the control, only for earthworms exposed to the lowest concentration of MPs. Considering that stress responses are complex, and involve multiple mechanisms, a cluster analysis taking into account all the parameters assessed, clearly identified two groups of earthworms separated by the concentration of 250mg MPs kg-1 soildw, above each meaningful effects were recorded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call