Abstract

Emerging resistance to the frontline antimalarial drug artemisinin represents a significant threat to worldwide malaria control and elimination. The patterns of parasite changes associated with emerging resistance represent a complex array of metabolic processes evident in various genetic mutations and altered transcription profiles. Genetic factors identified in regulating P. falciparum sensitivity to artemisinin overlap with the parasite's responses to malarial fever, sickle trait, and other types of oxidative stresses, suggesting conserved inducible survival responses. In this study we show that intraerythrocytic stress conditions, oxidative stress and heat shock, can significantly decrease the sensitivity of the parasite to artemisinin and lumefantrine, respectively. These results indicate that an intraerythrocytic oxidative stress microenvironment and heat-shock condition can alter antimalarial drug efficacy. Evaluating efficacy of antimalarial drugs under ideal in vitro culture conditions may not accurately predict drug efficacy in all malaria patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.