Abstract

There is evidence that diets rich in salt or simple sugars as fructose are associated with abnormalities in blood pressure regulation. However, the mechanisms underlying pathogenesis of salt- and fructose-induced kidney damage and/or consequent hypertension yet remain largely unexplored. Here, we tested the role of oxidative state as an essential factor along with high salt and fructose treatment in causing hypertension. Fischer male rats were supplemented with a high-fructose diet (20% in water) for 20 weeks and maintained on high-salt diet (8%) associate in the last 10 weeks. Fructose-fed rats exhibited a salt-dependent hypertension accompanied by decrease in renal superoxide dismutase activity, which is the first footprint of antioxidant inactivation by reactive oxygen species (ROS). Metabolic changes and the hypertensive effect of the combined fructose-salt diet (20 weeks) were markedly reversed by a superoxide scavenger, Tempol (10 mg/kg, gavage); moreover, Tempol (50 mM) potentially reduced ROS production and abolished nuclear factor-kappa B (NF-κB) activation in human embryonic kidney HEK293 cells incubated with L-fructose (30 mM) and NaCl (500 mosmol/kg added). Taken together, our data suggested a possible role of oxygen radicals and ROS-induced activation of NF-κB in the fructose- and salt-induced hypertension associated with the progression of the renal disease.

Highlights

  • There is evidence that diets rich in salt or simple sugars as fructose are associated with abnormalities in blood pressure regulation

  • Throughout our studies, fructose-fed rats on high-salt diet were evaluated and physiologic parameters are shown in the Fig. 1

  • While initial body weight of the animals among the groups were not significantly different, analysis of variance revealed a significant effect of salt intake on body weight, with high-fructose and salt (FS) animals weighing less (P < 0.05) at the end of 20 weeks than those on the control diet (Fig. 1A)

Read more

Summary

Introduction

There is evidence that diets rich in salt or simple sugars as fructose are associated with abnormalities in blood pressure regulation. The current study was designed to elucidate the contribution of ROS in the hypertensive response to an established model with fructose-fed rats maintained on high-salt load. While initial body weight of the animals among the groups were not significantly different, analysis of variance revealed a significant effect of salt intake on body weight, with high-fructose and salt (FS) animals weighing less (P < 0.05) at the end of 20 weeks than those on the control diet (Fig. 1A).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call