Abstract

The aim of this overview is to highlight the multiple ways in which oxidative stress could be exacerbating muscle wasting. Understanding these interactions in vivo will assist in identifying opportunities for more targeted therapies to reduce skeletal muscle wasting. There are many excellent reviews describing how oxidative stress can damage cellular macromolecules, as well as cause deleterious effects through the modulation of signalling pathways. In this overview, we highlight the potential for complex and possibly paradoxical interactions in vivo. Signalling pathways are discussed, using examples involving nuclear factor-kappa B, apoptosis signal-regulating kinase 1 and Akt. Oxidative stress may also be involved in complex interactions with other factors capable of stimulating the loss of muscle mass, possibly through amplifying feedback cycles. This is discussed using examples related to calcium and tumour necrosis factor. There is convincing evidence that oxidative stress can increase protein catabolism. The challenge is to demonstrate that oxidative stress is a significant player in the complex interplay that leads to the in-vivo muscle wasting that is caused by a range of conditions and diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.