Abstract
Oxidative stress is present in cardiovascular diseases (CVDs), and hyperhomocysteinemia, an independent risk factor for these diseases, may play a role by inducing production of oxygen free radicals. To evaluate the possible role of homocysteine (Hcy) in inducing oxidative stress in coronary artery disease (CAD), plasma Hcy was measured in 68 consecutive cardiovascular patients, and plasma malondialdehyde (MDA), both free and total (free + bound), was measured in 40 patients with CAD (18 with chronic stable angina and 22 with unstable angina). As controls, we tested 70 healthy volunteers. Hcy was measured by an immunoenzymatic method and MDA, an index of lipid peroxidation, by gas chromatography-mass spectrometry. Plasma Hcy concentrations were significantly higher in cardiovascular patients than in controls (10.2 vs 8.9 micromol/L; P <0.0002), with no significant difference between values in the stable and unstable angina subgroups. Similarly, total MDA was significantly higher in the CAD group than in the controls (2.6 vs 1.3 micromol/L; P <0.00001), again with no significant difference between stable and unstable angina patients. By contrast, free MDA, which was significantly higher in the CAD patients than the controls (0.4 vs 0.2 micromol/L; P < 0.00001), was also significantly higher in the unstable than in the stable angina group (0.5 vs 0.3 micromol/L; P <0.03). However, no correlation was observed among Hcy and free and total MDA. Our findings show that a moderate increase of Hcy is associated with CVD but that Hcy at the detected values cannot be considered completely responsible for oxidative damage. That lipid peroxidation is involved in CAD is shown by our observation of significantly increased plasma free and total MDA concentrations compared with controls. Moreover, free MDA values discriminated between unstable and chronic stable angina, and could thus represent a new diagnostic tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.