Abstract
Gallbladder cancer (GBC) is a fatal condition with dismal prognosis and aggressive local invasiveness; and with uncharacterised molecular pathology relating to non-specific therapeutic modalities. Given the importance of oxidative stress in chronic diseases and carcinogenesis, and the lacunae in literature regarding its role in gallbladder diseases, this study aimed to study the involvement of oxidative stress and deregulation in the base excision repair (BER) pathway in the pathogenesis of gallbladder diseases including GBC. This study involved patients from the North-East Indian population, where the numbers of reported cases are increasing rapidly and alarmingly. Oxidative stress, based on 8-OH-dG levels, was found to be significantly higher in gallbladder anomalies (cholelithiasis [CL] and cholecystitis [CS]) and GBC at the plasma and DNA level, and was associated with GBC severity. The expressions of key BER pathway genes were downregulated in gallbladder anomalies and GBC compared to controls, and in GBC compared to both non-neoplastic controls and gallbladder anomalies. Expression of XRCC1 and hOGG1 was significantly associated with both susceptibility and severity of GBC. The XRCC1 codon280 polymorphism was associated with disease susceptibility; and significantly higher oxidative stress was observed in hOGG1 genotypic variants. The genomes of GBC patients were found to be more hypermethylated compared to controls, with the promoters of XRCC1 and hOGG1 being hypermethylated and, therefore, being silenced. This study underlined the prognostic significance of the oxidative stress marker 8-OH-dG and BER pathway genes, especially hOGG1 and XRCC1, in gallbladder anomalies and GBC, as well as stated their potential for therapeutic targeting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.