Abstract

The aging process is associated with increased production of free radicals, but regular exercise training might create a balance between oxidative stress and the anti-oxidant system. The aim of the present study was to investigate the effect of resistance training (RT) on the serum levels of tumor necrosis factor-α, malondialdehyde, total anti-oxidant capacity and nuclear factor-κB in young and older adult women. A total of 44 women were divided into four groups: older-training, older-control, young-training and young-control. The experimental groups carried out 12 weeks of RT with an intensity of 75% one repetition maximum. After finishing the RT program, total anti-oxidant capacity and nuclear factor-κB in both the young and older adult training groups were significantly increased, whereas malondialdehyde in the young and the older exercising groups decreased. In addition, malondialdehyde in both the older and young groups, and total anti-oxidant capacity in only the young group, were respectively lower and higher compared with their inactive counterparts. No significant changes in tumor necrosis factor-α occurred in training groups after the 12-week intervention, but the older and younger training groups had a significant difference with the young control group in the post-test. It seems that the strengthening of the anti-oxidant system resulting from regular RT in older adults is similar to those of young people. Geriatr Gerontol Int 2019; 19: 419-422.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.