Abstract

Amine/oxide hybrid carbon dioxide adsorbents prepared via impregnation of low molecular weight polymeric amines into porous oxide supports are among the most promising solid adsorbents developed for postcombustion CO2 capture or CO2 extraction from ambient air. The oxidative stability of adsorbents prepared by impregnation of poly(ethylenimine) (PEI) or poly(allylamine) (PAA) into mesoporous γ-alumina under humid oxidation conditions is evaluated in this work. The PEI-based adsorbents, which contain primary, secondary, and tertiary amines, are shown to degrade drastically at elevated temperatures (110 °C) and in high oxygen concentrations (21%, akin to air), with these effects reduced by both reductions in temperature (70 °C) and oxygen concentration (5%, akin to flue gas). The oxidation behavior of PEI-based adsorbents supported on alumina is qualitatively similar to past work on silica-supported PEI adsorbents. In contrast, the alumina-supported PAA adsorbents that contain only primary amines show signi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.