Abstract

To recover rare earths (RE) with low acid consumption and low environmental pollution, selective pressure leaching with hydrochloric acid from roasted NdFeB scrap was explored. The phase evolution of NdFeB scrap during roasting at 800 °C as a function of time was confirmed, and after complete oxidation, its phase components consisted of Fe2O3, NdFeO3, and NdBO3. In the selective pressure leaching procedure, the optimal leaching was achieved at 110 °C for 30 min, in which the leaching rate of rare earth was 96.27% along with 13.33% of Fe. Subsequently, the effects of the hydrochloric acid dosage, the hydrochloric acid concentration and the particle size of the roasted NdFeB powder on the leaching rate of rare earth were investigated. For leaching at 110 °C for 30 min, the leaching of 13.33% Fe2O3 was derived from the Fe2O3 and NdFeO3 phases in the fully oxidized NdFeB scrap. This phenomenon was verified by the leaching of Fe from Fe2O3 of analytical purity and synthetic NdFeO3. Moreover, the leaching of Nd and Fe from the NdFeO3 phase was found to occur simultaneously. The advantages of the selective pressure leaching process using hydrochloric acid for the oxidized NdFeB scrap were comprehensively evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.