Abstract

Bisphenol A (BPA), a controversial endocrine disruptor, is ubiquitous in the aquatic environment. In this study, the oxidative degradation of BPA and its mechanism using zero valent aluminum (ZVAl)–acid system under air-equilibrated conditions was investigated. Under pH <3.5 acidic conditions, ZVAl demonstrated an excellent capacity to remove BPA. More than 75% of BPA was eliminated within 12 h in pH 1.5 reaction solutions initially containing 4.0 g/L aluminum and 2.0 mg/L BPA at 25 ± 1 °C. The removal of BPA was further accelerated with increasing aluminum loadings. Higher temperature and lower initial pH also facilitated BPA removal. The addition of Fe 2+ into the ZVAl–acid system significantly accelerated the reaction likely due to the enhancing transformation of H 2O 2 to HO via Fenton reaction. Furthermore, the primary products or intermediates including monohydroxylated BPA, hydroquinone, 2-(4-hydroxyphenyl)propane and 4-isopropenylphenol, were identified and a possible reaction scheme was proposed. The remarkable capacity of the ZVAl–acid system in removing BPA displays its potential application in the treatment of organic compound–contaminated water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.