Abstract

The exploration of novel technologies to reduce the air pollution and greenhouse gas emissions has been of great interest. Gliding arc plasma reformer at atmospheric pressure has been developed for converting n-heptane to hydrogen. The system has been evaluated by H2 yield and energy yield via continuous n-heptane oxidative reforming at room temperature. Effects of some process parameters (discharge gap, input power, residence time, and O/C) have been studied on the reaction performance. The maximum H2 yield and energy yield are 50.1% and 94.5 L (kW h)−1. To investigate the role of inert gas (N2, Ar) in the plasma oxidative reforming system, the performance of C7H16/air, C7H16/N2/O2/Ar and C7H16/O2/Ar have been investigated. The results show that N2 (B3Πg) and Ar∗ can accelerate the formation of active oxygen species (such as O+, O (1D) and O). The presence of active oxygen species promotes the progress of the oxidative reforming reaction. What's more, N2 (B3Πg) is also conducive to the direct conversion of n-heptane. The reaction mechanism of hydrogen production from gliding arc plasma oxidative reforming of n-heptane was proposed based on the analysis of the OES and GC–MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.