Abstract

Among protein oxidative damages, di-tyrosine bridges formation has been evidenced in many neuropathological diseases. Combining oxidative radical production by gamma radiolysis with very performant chromatographic separation coupled to mass spectrometry detection, we brought into light new insights of tyrosine dimerization. Hydroxyl and azide radical tyrosine oxidation leading to di-tyrosine bridges formation was studied for different biological compounds: a full-length protein (Δ25-centrin 2), a five amino acid peptide (KTSLY) and free tyrosine. We highlighted that both radicals generate high proportion of dimers even for low doses. Surprisingly, no less than five different di-tyrosine isomers were evidenced for the protein and the peptide. For tyrosine alone, at least four distinct dimers were evidenced. These results raise some questions about their respective role in vivo and hence their relative toxicity. Also, as di-tyrosine is often used as a biomarker, a better knowledge of the type of dimer detected in vivo is now required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.