Abstract

BackgroundSickle cell disease (SCD) is a class of hemoglobinopathy resulting from a single mutation in the ß-globin chain inducing the substitution of valine for glutamic acid at the sixth amino acid position which leads to the production of abnormal haemoglobin (haemoglobin S [HbS]). Studies demonstrated the implication of oxidative stress in the development of the sickle cell disease.MethodsThe study aim was to determine the level of oxidative stress markers in a group of sickle cell homozygous patients (SS) in the Yaounde Central Hospital above 15 years of age. Hemolysates obtained from patients were used to investigate some oxidative stress markers including malondialdehyde (MDA), nitric oxide (NO), catalase (CAT), superoxide dismutase (SOD), peroxidase, total antioxidant capacity (TAC) and total protein concentration.ResultsEighty four individuals, 42 males and 42 females participated (50 % each) with an age range of 15 to 55 years. The levels of markers were significantly higher in the healthy AA group than sickle (SS) (p < 0.05), with the exception of MDA which was significantly high in sickle cell (SS) patients than healthy (p = 0.037). With respect to the gender, both healthy and SS females showed a greater Total anti-oxidant capacity (65 μM) compared to the males (55 μM).ConclusionThe increase in the oxidative stress level especially MDA in sickle cell homozygous patients compared to healthy AA individuals confirms that oxidative stress is involved in the pathogenesis of the sickle cell disease.

Highlights

  • Sickle cell disease (SCD) is a class of hemoglobinopathy resulting from a single mutation in the ß-globin chain inducing the substitution of valine for glutamic acid at the sixth amino acid position which leads to the production of abnormal haemoglobin

  • There was a general decrease in the Body Mass Index (BMI) of sickle cell patients as compared to healthy individuals in both male and female groups (Table 1)

  • The levels of superoxide dismutase (SOD), CAT, total antioxidant capacity (TAC) and nitric oxide (NO) were significantly (p < 0.05) higher in the healthy group compared to the sickle cell group

Read more

Summary

Introduction

Sickle cell disease (SCD) is a class of hemoglobinopathy resulting from a single mutation in the ß-globin chain inducing the substitution of valine for glutamic acid at the sixth amino acid position which leads to the production of abnormal haemoglobin (haemoglobin S [HbS]). Studies demonstrated the implication of oxidative stress in the development of the sickle cell disease. Sickled Hb is associated with steady state increases in plasma cell-free hemoglobin and overproduction of reactive oxygen species (ROS). The prevalence of sickle cell trait in western, central and eastern Africa varies from 5 to 40 % but it is less common in northern and southern Africa [5]. In Cameroon, the prevalence of the sickle cell trait is estimated to be 18.2 % for the heterozygous form and 2–3 % for the homozygous SS forms [3]. It is relevant to evaluate the oxidative status of homozygous SS patients and to identify whether these markers could be associated with the physiopathology of the disease

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.