Abstract

Surgical implantation of metallic stents is today a common procedure for restoring narrowed arteries. However, main complications as in-stent restenosis, partial or total thrombosis, inflammation and devices degradation are still a serious clinical concern. The coating of stents with fluorocarbon (CFx) ultrathin films represents a valuable strategy to limit these complications. Moreover, an additional step for the modification of some key surface properties of CFx coatings could further enhance their blood compatibility. Therefore, the objective of this work was to develop an oxidation process specific to ultrathin CFx coatings based on a methanol plasma treatment to modulate their biological response. Oxidized and non-oxidized coatings were investigated by XPS, ToF-SIMS, water contact angle, SEM and AFM. Tunable oxidation of the surface of CFx coatings was obtained by methanol plasma treatment, thus producing an increase of surface wettability, without affecting morphology, roughness and adhesion of the coatings. Blood test results showed an increased hemocompatibility of the oxidized samples, confirming the hypothesis that such treatment can succeed in modulating the blood contact behavior of the CFx oxidized coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call