Abstract
Neural activity has been suggested to initially trigger ATP production by glycolysis, rather than oxidative phosphorylation, for three reasons: glycolytic enzymes are associated with ion pumps; neurons may increase their energy supply by activating glycolysis in astrocytes to generate lactate; and activity increases glucose uptake more than O₂ uptake. In rat hippocampal slices, neuronal activity rapidly decreased the levels of extracellular O₂ and intracellular NADH (reduced nicotinamide adenine dinucleotide), even with lactate dehydrogenase blocked to prevent lactate generation, or with only 20% superfused O₂ to mimic physiological O₂ levels. Pharmacological analysis revealed an energy budget in which 11% of O₂ use was on presynaptic action potentials, 17% was on presynaptic Ca²⁺ entry and transmitter release, 46% was on postsynaptic glutamate receptors, and 26% was on postsynaptic action potentials, in approximate accord with theoretical brain energy budgets. Thus, the major mechanisms mediating brain information processing are all initially powered by oxidative phosphorylation, and an astrocyte-neuron lactate shuttle is not needed for this to occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.