Abstract

A procedure was described to prepare stable membrane fragments from aerobically grown cells of Micrococcus denitrificans. This preparation contained flavins, cytochromes b, c, a and o, and catalyzed the synthesis of ATP coupled to the oxidation of NADH and succinate. The P:O ratios were about 1.0 for NADH and 0.4 for succinate oxidation. The electron-transfer pathways responsible for these oxidations were similar to, though not identical with, those of mammalian mitochondria in their construction and sensitivity to inhibitors. Oxidative phosphorylation by the membrane fragments was uncoupled by the usual uncouplers and energy-transfer inhibitors, though 2,4-dinitrophenol was much less effective and higher concentrations of oligomycin and tributyltin chloride were required for complete inhibition as compared with the mitochondrial system. Oleate also caused uncoupling, which was relieved by serum albumin. Treatment with high concentrations of LiCl yielded an essentially uncoupled preparation, but this treatment as well as many other procedures failed to yield soluble coupling factors. Unlike the mitochondrial ATPase activity, ATP hydrolysis by the membrane fragments was inhibited to about 50% by uncouplers and energy-transfer inhibitors. It seems that the bacterial preparation possessed two types of ATPase, one of which was sensitive to these reagents as well as to LiCl treatment and probably to high concentrations of ADP. The advantage of this preparation for the study of the mechanism of oxidative phosphorylation is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call