Abstract
The objective of this study was to investigate the effect of pork oxidation through modified atmosphere packaging (MAP) on gel characteristics of myofibrillar proteins (MP) during the heat-induced gelation process. The pork longissimus thoracis (LT) was treated by MAP at varying oxygen concentrations (0, 20, 40, 60, and 80% O2) with a 5-day storage at 4 °C for the detection of MP oxidation and gel properties. The findings showed the rise of O2 concentration resulted in a significant increase of carbonyl content, disulfide bond, and particle size, and a decrease of sulfhydryl content and MP solubility (p < 0.05). The gel textural properties and water retention ability were significantly improved in MAP treatments of 0–60% O2 (p < 0.05), but deteriorated at 80% O2 level. As the concentration of O2 increased, there was a marked decrease in the α-helix content within the gel, accompanied by a simultaneous increase in β-sheet content (p < 0.05). Additionally, a judicious oxidation treatment (60% O2 in MAP) proved beneficial for crafting dense and uniform gel networks. Our data suggest that the oxidation treatment of pork mediated by O2 concentration in MAP is capable of reinforcing protein hydrophobic interaction and disulfide bond formation, thus contributing to the construction of superior gel structures and properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.