Abstract

Heme-peroxidases, such as horseradish peroxidase (HRP), are among the most popular catalysts of low density lipoprotein (LDL) peroxidation. In this model system, a suitable oxidant such as H2O2 is required to generate the hypervalent iron species able to initiate the peroxidative chain. However, we observed that traces of hydroperoxides present in a fresh solution of linoleic acid can promote lipid peroxidation and apo B oxidation, substituting H2O2.Spectral analysis of HRP showed that an hypervalent iron is generated in the presence of H2O2 and peroxidizing linoleic acid. Accordingly, careful reduction of the traces of linoleic acid lipid hydroperoxide prevented formation of the ferryl species in HRP and lipid peroxidation. However, when LDL was oxidized in the presence of HRP, the ferryl form of HRP was not detectable, suggesting a Fenton-like reaction as an alternative mechanism. This was supported by the observation that carbon monoxide, a ligand for the ferrous HRP, completely inhibited peroxidation of LDL.These results are in agreement with previous studies showing that myoglobin ferryl species is not produced in the presence of phospholipid hydroperoxides, and emphasize the relevance of a Fenton-like chemistry in peroxidation of LDL and indirectly, the role of pre-existing lipid hydroperoxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call