Abstract

Methodological advances have allowed the isolation of two populations of synaptic (SM and SM2) and two populations of nonsynaptic (A and B) mitochondria from rat forebrain. All four populations of brain mitochondria are metabolically active and essentially free from nonmitochondrial contaminants. They (SM, SM2, A, and B) can oxidize a variety of substrates; the best substrate is pyruvate. With pyruvate as the substrate, the respiratory control ratios (i.e., state 3/state 4) in all four populations are routinely > 6. Results from numerous enzyme activity measurements provide strong support for the hypothesis that brain mitochondria are very heterogeneous with respect to their enzyme contents and that the enzymatic activities in a particular population of mitochondria, be they synaptic or nonsynaptic, differ from those in another population of mitochondria derived from either the same or another brain region. The major methodological advances in brain mitochondrial isolation greatly facilitate metabolic studies. For example, we have demonstrated that the K+ stimulation of brain mitochondrial pyruvate oxidation is mediated through a K(+)-induced elevation of the activation state of the pyruvate dehydrogenase complex and the K+ stimulation of the flux through the pyruvate dehydrogenase complex. Our previous and ongoing studies using primary cultures of hypothalamic neurons and astrocytes are consistent with the proposal that brain cells are heterogeneous with respect to their capabilities in energy metabolism. I can envisage that in the no-so-distant future, one could adapt these preparations of cells as the starting material for the isolation of mitochondria of known cellular origin for metabolic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.