Abstract

In order to define whether active oxygen species actually induce oxidative damage to the nervous system, and how antioxidative defense systems are changed by oxidative stress, morphological and functional changes in the nervous system and antioxidant status were investigated. When rats were exposed to 100% oxygen in a chamber, many morphological changes, e.g. swollen astrocytes around vessels, deformed nuclei in nerve cells, pigmentation, swollen mitochondria, and abnormal accumulation of synaptic vesicles in swollen nerve terminals, were observed by electron microscopy. When synaptosomes isolated from oxygen-exposed rats were stimulated by KCl, acetylcholine release from the terminal was decreased more significantly than in synaptosomes from unexposed rats (P < 0.01). Synaptic plasma membrane fluidity decreased in response to oxygen exposure, and plasma membrane permeability to sucrose was increased significantly (P < 0.05). The cholesterol/phospholipid ratio of the plasma membranes was increased by oxidative stress and the content of unsaturated fatty acids, especially arachidonic acid and docosahexaenoic acid, decreased. The levels of thiobarbituric-acid-reactive substances in the plasma membranes of oxygen-exposed rats were significantly higher than in unexposed rats (P < 0.01). These results suggest that free radicals derived from oxygen may attack nerve terminals and peroxidize the plasma membrane. It was found that in response to the oxidative stress, the status of the defense system in synapse, i.e. the concentration of vitamin E, activities of superoxide dismutase and glutathione peroxidase changed, and that many of the changes observed were reduced remarkably by the intraperitoneal administration of vitamin E prior to stress. Data support the idea that vitamin E contributes to the protection against nerve dysfunction caused by oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.