Abstract

Since the discovery of the role of oxidative etching in shape-controlled metal nanostructure synthesis in 2004, it has become a versatile tool to precisely manipulate the nucleation and growth of metal nanocrystals at the atomic level. Subsequent research has shown that oxidative etching can be used to reshape nanocrystals via atomic addition and subtraction. This research has attracted extensive attention from the community because of its promising practical applications and theoretical value, and as a result, tremendous efforts from numerous research groups have been made to expand and apply this method to their own research. In this review, we first outline the merits of oxidative etching for the controlled synthesis of metal nanocrystals. We then summarize recent progress in the use of oxidative etching to control the morphology of a nanostructure during and after its synthesis, and analyze its specific functions in controlling a variety of nanocrystal parameters. Applications enabled by oxidative etching are also briefly presented to show its practical impact. Finally, we discuss the challenges and opportunities for further development of oxidative etching in nanocrystals synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.