Abstract
Fungal co-cultures appear to be advantageous for ligninolytic enzyme (LE) production compared to single fungal strains. The aims of this study were (1) to determine the type of fungal interactions in the co-cultures of two white-rot fungi (WRF, Pycnoporus sanguineus and Trametes maxima) and eight soil-borne micromycetes (SBM), (2) to determine the laccase and manganese peroxidase (MnP) activities and the hydrogen peroxide (H2O2) production in two compatible fungal and micromycetic co-cultures in submerged fermentation, and (3) to understand the effect of H2O2 on LE production by WRF through a dose-response bioassay. In the co-culture of SBM and Pycnoporus sanguineus, the main interaction was deadlock at a distance, whereas T. maxima showed competitive antagonism and replaced the SBM. In the agar plates, Purpureocillium lilacinum (27.8-fold increase) and Beauveria brongniartii (9.4-fold increase) enhanced the laccase and MnP activities of P. sanguineus, and Metarhizium anisopliae (Ma129) (0.83-fold increase) and Trichoderma sp. SP6 (22.6-fold increase) similarly enhanced these activities in T. maxima. In submerged fermentation, P. lilacinum also increased the laccase and MnP activities of P. sanguineus. The laccase activity of T. maxima only increased in the co-culture with B. brongniartii. The co-cultures achieved higher H2O2 production compared to the WRF monoculture, which played a vital role in the increase of LE. The dose-response assays revealed that low concentrations of H2O2 (2.94 and 14.69 mM) enhance the laccase and MnP activities in WRF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.