Abstract

The toxicity and effects of diethyl phthalate (DEP), a potent allelochemical, on the growth of greater duckweed were studied. Biochemical analyses and physiological methods were combined to investigate oxidative stress, adverse effects and their mechanisms in greater duckweeds grown in 0–2mM of diethyl phthalate (DEP) after cultivation for 7 days. The results showed that J-shaped concentration response curves were displayed in hydrogen peroxide (H2O2), ascorbic acid (ASA) and dehydroascorbate (DHA) levels, and ascorbate peroxidase (APX) and gualacol peroxidase (POD) activities, indicating reduced oxidative stress and toxic effect. The inverted U-shaped curves were exhibited in relative growth rate (RGR), fresh weight/dry weight (FW/DW) ratio, total chlorophyll content, total soluble thiols, and glutathione reductase (GR) activity, revealing beneficial effect in plant growth. The inverted U-shaped curves were also found in malondialdehyde (MAD) and superoxide radical (O2−) contents with the increasing concentration of DEP, indicative of enhanced oxidative stress. The results suggest that DEP is toxic to the greater duckweed by inducing oxidative stress and antioxidative enzymes may play important roles in the defense strategy against DEP toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.