Abstract

Helicobacter pylori (H. pylori) induced DNA damage which may be related to gastric cancer development. The DNA damage response coordinates DNA repair, cell-cycle transition, and apoptosis through activation of DNA damage response molecules. The damaged DNA is repaired through non-homologous end joining (NHEJ) or homologous recombination (HR). In the present study, we investigated the changes of HR DNA repair proteins (ataxia-telangiectasia-mutated; ATM, ATM and Rad3-related; ATR), NHEJ repair proteins (Ku70/80), cell cycle regulators (Chk1, Chk2), and apoptosis marker (p53/p-p53) were determined in H. pylori-infected Mongolian gerbils. In addition, the effect of an antioxidant N-acetylcysteine (NAC) on H. pylori-induced DNA damage response was determined to assess the involvement of oxidative stress on DNA damage of the animals infected with H. pylori. One week after intragastric inoculation with H. pylori, Mongolian gerbils were fed with basal diet with or without 3% NAC for 6 weeks. After 6 week, the expression levels of DNA repair proteins (Ku70/80, ATM, ATR), cell cycle regulators (Chk1, Chk2) and apoptosis marker (p-p53/p53) were increased in gastric mucosa of Mongolian gerbils, which was suppressed by NAC treatment. In conclusion, oxidative stress mediates H. pylori-induced DNA damage response including NHEJ and HR repairing processes, cell cycle arrest and apoptosis in gastric mucosa of Mongolian gerbils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call