Abstract

A series of beta-diketone ligands, R(1)COCH(2)COR(2) [tmhdH (R(1) = R(2) = C(CH(3))(3)); tfacH (R(1) = CF(3); R(2) = CH(3)); hfacH (R(1) = R(2) = CF(3))], in combination with tert-butyl peracetate (t-BuPA), have been investigated as etchant solutions for dissolution of copper metal into carbon dioxide solvent. Copper removal in CO(2) increases in the order tfacH < tmhdH < hfacH. A study of the reactions of the hfacH/t-BuPA etchant solution with metallic copper and zinc was conducted in three solvents: scCO(2) (supercrical CO(2)); hexanes; CD(2)Cl(2). The etchant solution/metallic zinc reaction produced a diamagnetic Zn(II) complex, which allowed NMR identification of the t-BuPA decomposition products as tert-butyl alcohol and acetic acid. Gravimetric analysis of the amount of zinc consumed, together with NMR studies, confirmed the 1:1:2 Zn:t-BuPA:hfacH reaction stoichiometry, showing t-BuPA to be an overall two-electron oxidant for Zn(0). The metal-containing products of the copper and zinc reactions were characterized by elemental analysis, IR spectroscopy, and, as appropriate, NMR spectroscopy and single-crystal X-ray diffraction [trans-M(hfac)(2)(H(2)O)(CH(3)CO(2)H) (1, M = Cu; 2, M = Zn)]. On the basis of the experimental results, a working model of the oxidative dissolution reaction is proposed, which delineates the key chemical variables in the etching reaction. These t-BuPA/hfacH etchant solutions may find application in a CO(2)-based chemical mechanical planarization (CMP) process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call