Abstract
A non-phenolic lignin model dimer, 1-(4-ethoxy-3-methoxyphenyl)-2-phenoxypropane-1,3-diol, was oxidized by a lipid peroxidation system that consisted of a fungal manganese peroxidase, Mn(II), and unsaturated fatty acid esters. The reaction products included 1-(4-ethoxy-3-methoxyphenyl)-1-oxo-2-phenoxy-3-hydroxypropane and 1-(4-ethoxy-3-methoxyphenyl)-1-oxo-3-hydroxypropane, indicating that substrate oxidation occurred via benzylic hydrogen abstraction. The peroxidation system depolymerized both exhaustively methylated (non-phenolic) and unmethylated (phenolic) synthetic lignins efficiently. It may therefore enable white-rot fungi to accomplish the initial delignification of wood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.