Abstract

Furnace black and acetylene black were oxidized with concentrated nitric acid at 100 °C for prolonged periods. The oxidized carbon black was dissolved/dispersed into alkaline solution and was size-fractionated into six fractions by ultrafiltration. The yields of the fractions revealed that oxidized furnace black contains oxygenated polynuclear aromatic compounds with a variety of molecular sizes, but oxidized acetylene black consists of only a great quantity of the largest size fraction, probably carbon black particles, and a scarce amount of the smallest size fraction. With oxidized furnace black, elemental compositions of all fractions except the largest molecular-size fraction were independent of the period of oxidation, suggesting that each fraction possesses a similar molecular structure. Noncarbon constituents such as oxygen and hydrogen increased with decreasing molecular size. The mean molecular weights of fractions were estimated to be in a range from ca. 400 to 1200 and more on the basis of elemental and functional group analyses. 13C-NMR and IR analysis showed that the molecules of fractions comprise phenolic, carboxylic, nitro, perhaps quinonic carbonyl groups, and aromatic carbons, but no aliphatic carbons. Ultraviolet and visible spectra of fractions denoted that absorption at higher wavelengths increased with increasing the molecular weights, indicating extension in the conjugated aromatic ring system. On the basis of the experimental results molecular structure models for the fractions were proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.