Abstract

Abstract For extending the lifetime and improving the safety of lithium-ion batteries, the decomposition mechanism of electrolytes in lithium-ion batteries was kinetically and stereospecifically investigated in simplified reaction systems, which were in contact with the charged positive electrodes including Li1−xCoO2 as an active material removed from batteries. By identifying the products, mainly vinylene carbonate (VC) was detected by gas chromatography as an oxidation product of ethylene carbonate (EC). The kinetic isotope effects of the reaction were examined using EC and deuterium-labeled EC-D4. The kH/kD was found to be 2.9 suggesting the C–H bond cleavage step was irreversible and corresponds to the rate-determining step of the overall process in the reaction. Moreover, Arrhenius and Eyring plots and stereospecific studies using syn-substituted EC-D2 indicated that the transition state has a rigid structure and that the elimination of hydrogens from EC proceeds mainly via syn stereochemistry. Upon a change in the charge potential of Li1−xCoO2 from 4.5 V to 4.1 V, the rate of formation of VC decreased. PF6−, PO3F2−, and PO2F2− relating to LiPF6 promoted the generation of VC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.