Abstract

The gas-phase oxidations of aniline, N-methylaniline, and N,N-dimethylaniline by FeO+ cation are examined by using mass spectrometric techniques. Although bare FeO+ is capable of hydroxylating aromatic C—H bonds, the fate of the oxidation of arylamines is determined by docking of the FeO+ unit at nitrogen. The major reactions of the metastable aniline/FeO+ complex are losses of molecular hydrogen, ammonia, and water, all involving at least one N-H proton. N-alkylation results in a complete shift of the course of the reaction. The unimolecular processes observed can be regarded as initial steps of an oxidative dealkylation of the amines mediated by FeO+. More detailed mechanistic insight is obtained by examining the C—H(D) bond activation of N-methyl-N-([D3]-methyl)aniline by bare and ligated FeO+ species. The gas-phase reactions of FeO+ with methylanilines show some similarities to the enzymatic dealkylation of amines by cytochrome P-450. The kinetic isotope effects observed experimentally suggest an electron transfer mechanism for the gas-phase reaction.Key words: mass spectrometry, gas-phase chemistry, iron, dealkylation, N,N-dimethylaniline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call