Abstract

Free radicals may be involved in apoptosis although this is the subject of some controversy. Furthermore, the source of free radicals in apoptotic cells is not certain. The aim of this study was to elucidate the role of oxidative stress in the induction of apoptosis in serum-deprived fibroblast cultures and in weaned lactating mammary glands as in vitro and in vivo experimental models, respectively. Oxidative damage to mtDNA is higher in apoptotic cells than in controls. Oxidized glutathione (GSSG) levels in mitochondria from lactating mammary gland are also higher in apoptosis. There is a direct relationship between mtDNA damage and the GSSG/reduced glutathione (GSH) ratio. Furthermore, whole cell GSH is decreased and GSSG is increased in both models of apoptosis. Glutathione oxidation precedes nuclear DNA fragmentation. These signs of oxidative stress are caused, at least in part, by an increase in peroxide production by mitochondria from apoptotic cells. We report a direct relationship between glutathione oxidation and mtDNA damage in apoptosis. Our results support the role of mitochondrial oxidative stress in the induction of apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.