Abstract
Chlorfenvinphos (CFVF) is an organophosphorus insecticide, which was used to control insect pest on livestock and household pests such as flies, fleas, and mites. The molecular basis of toxic properties of CFVF in animals has been insufficiently studied. Blood can transport oxygen and nutrients as well as toxic compounds. Xenobiotics can enter to red blood cells and cause damage. Therefore, investigation of the toxicity of different compounds to erythrocytes is very important. The purpose of the present experiment was to evaluate the effect of this compound on human erythrocytes. We have evaluated the hemolysis, hemoglobin oxidation (met-Hb formation) and lipid peroxidation in human erythrocytes. Moreover, the changes in the level of reactive oxygen species (ROS) were assessed using flow cytometry as well as those in morphological changes of erythrocytes using phase contrast microscopy. This study describes the interaction of low concentrations of CFVF with human erythrocytes as well as the concentrations, which may enter human organism as a result of acute poisoning (0.5–250 μM). It was shown that CFVF only at high concentration induced changes in human erythrocytes. We have observed hemolysis (at 250 μM), changes in morphological parameters including echinocytes formation (at 250 μM), as well as increase in lipid peroxidation in erythrocytes (at 250 μM), ROS formation (at 100 μM) in red blood cells treated 1 hour with CFVF. Additionally, CFVF after 4 h of incubation oxidized hemoglobin, however, to a lower degree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.