Abstract
Damage to cellular membranes from oxidative stress has been implicated in aging related diseases. We report the effects of oxidative damage on the structure and properties of biomimetic phospholipid membrane systems. Two oxidation methods were used, in situ oxidation initiated using Fe(II) and ascorbate, and the incorporation of a synthetic "oxidized" phospholipid, PoxnoPC, into biomimetic membranes. The biomimetic systems employed included multibilayer stacks, tethered bilayers, and phospholipid monolayers studied using a combination of reflectometry, attenuated total reflection infrared spectroscopy, electrochemical impedance spectroscopy, and neutron diffraction. We show that oxidation with Fe(II) and ascorbate caused an increase in the order of the membrane, attributed to cross-linking of the phospholipids, and a change in the electrical permeability of the membrane, but no significant impact on the thickness or completeness of the membrane. Incorporation of PoxnoPC, on the other hand, had a larger impact on the structure of the membrane. Inversion of the aldehyde-terminated truncated sn-2 chain of PoxnoPC into the head group region was observed, along with a slight decrease in the thickness and order of the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.