Abstract
Abstract Modification and performance of Li induced silica phase transition of (Mn+W)/SiO 2 catalyst, under reaction conditions of oxidative coupling of methane (OCM), have been investigated employing textural characterizations and redox studies. Stability and precrystalline form of fresh Li induced silica phase transition catalyst depend on the Li loading. A catalyst, with high lithium loading, destabilizes on OCM stream. This destabilization is not due to Li evaporation at OCM reaction conditions, a-cristobalite is proposed to be an intermediate in the crystallization of amorphous silica into quartz in the Li-induced silica phase transition process. However, the type of crystalline structure was found to be unimportant with regard to the formation of a selective catalyst. Metal-metal interactions of Li-Mn, Li-W and Mn-W, which are affected during silica phase crystallization, are found to be critical parameters of the trimetallic catalyst and were studied by TPR. Role of lithium in Li doped (Mn+W)/SiO 2 catalyst is described as a moderator of the Mn-W interaction by involving W in silica phase transition. These interactions help in the improvement of transition metal redox properties, especially that of Mn, in favor of OCM selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.