Abstract

Abstract Oxidative coupling of methane (OCM) was conducted over LaAlO3_X catalysts that were prepared by a co-precipitation method using different co-precipitation pH values (X = 6–10). The aim is to investigate the effect of pH values on the catalytic activity of LaAlO3 catalysts in this reaction. The results showed that the co-precipitation pH value affected greatly on the formation of chemical species of precipitate precursors in the co-precipitation step, leading to different phases of the finally obtained LaAlO3 catalysts. When the co-precipitation pH value increased up to 8, the lanthanum-related phases such as La2O3 and La(OH)3 were gradually formed as by-products, preventing the formation of LaAlO3 perovskite crystalline structure and facilitating the formation of oxygen vacancies on catalyst surface. However, at pH value of 9 or higher, the lanthanum content in the precipitate precursor was increased greatly. Not LaAlO3 perovskite but lanthanum-related phases were developed as main phases, reducing their catalytic activities in this reaction. Among LaAlO3 catalysts, the one prepared at pH = 8 showed the highest C2 yield due to its well-developed oxygen vacancies and electrophilic lattice oxygen. Therefore, the co-precipitation pH value strongly affected the LaAlO3 catalyst activity in OCM reaction. A precious pH control should be required to prepare various perovskite catalysts for the OCM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.