Abstract

The cleavage of β-O-4 linkage in lignin is one of the key steps for oxidative conversion of lignin to low-molecular-weight aromatics. Herein, Co nanoparticles embedded in three-dimensional network of nitrogen-doped graphene (Co/NG@3DNG-X) were prepared through an immersion-pyrolysis procedure, in which X denotes the pyrolysis temperature. The detailed characterization of Co/NG@3DNG-X shows that the Co nanoparticles are coated with a few layers of nitrogen-doped graphene (NG) sheets that are further embedded in 3DNG matrix. The catalytic activities of the Co/NG@3DNG-X for the oxidative cleavage of β-O-4 linkage in lignin model compounds with O2 as oxidant are explored. It is demonstrated that catalytic activities of as-prepared Co/NG@3DNG-X can be tuned by varying the pyrolysis condition, and the Co/NG@3DNG-900 shows the highest catalytic activity, which is attributed to the enriched Co-Nx species, the strong surface basicity, the high specific surface and the mesoporous motif of 3DNG network. More pronouncedly, the Co/NG@3DNG-900 can also effectively catalyze the oxidative cleavage of organosolv lignin, generating certain monomeric aromatics. Additionally, the intrinsic magnetic property of Co nanoparticles makes the Co/NG@3DNG-X be easily recovered from the reaction mixture, and the as-coated thin NG layer can protect Co nanoparticle from oxidation condition, which putting together afford the Co/NG@3DNG-X with good reusability and stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call