Abstract

The study investigates the role of the oxidative and proteolytic inactivation of alpha-1 antitrypsin (AAT) in the pathogenesis of bronchopulmonary dysplasia (BPD) in premature infants. Bronchoalveolar lavage fluid (BALF) samples were collected on the 3rd day of life from mechanically ventilated neonates with gestational age ≤ 30 weeks and analyzed without previous treatment (top-down proteomics) by reverse-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. AAT fragments were identified by high-resolution LTQ Orbitrap XL experiments and the relative abundances determined by considering the extracted ion current (XIC) peak area. Forty preterm neonates were studied: 20 (50%) did not develop BPD (no-BPD group), 17 (42.5%) developed mild or moderate new-BPD (mild + moderate BPD group), and 3 (7.5%) developed severe new-BPD (severe BPD group). Eighteen fragments of AAT and a fragment of AAT oxidized at a methionine residue were identified: significantly higher values of AAT fragments 25–57, 375–418, 397–418, 144–171, and 397–418 with oxidized methionine were found in the severe BPD group. The significantly higher levels of several AAT fragments and of the fragment 397–418, oxidized in BALF of preterm infants developing BPD, underlie the central role of an imbalance between proteases and protease inhibitors in exacerbating lung injury and inducing most severe forms of BPD. The study has some limitations, and between them, the small sample size implies the need for further confirmation by larger studies.

Highlights

  • Bronchopulmonary dysplasia (BPD) is one of the most frequent chronic diseases of premature infants, causing ongoing respiratory morbidity and mortality [1]

  • The same authors performed a treatment with a catalytic antioxidant in “severe bronchopulmonary dysplasia (BPD)” baboon obtaining an increase of Alpha-1 antitrypsin (AAT) elastase inhibitory activity

  • The number of male neonates was significantly lower in the no-BPD group with respect to the others, and the incidence of rupture of membranes was significantly higher in the severe BPD group (p < 0.05, Table 1)

Read more

Summary

Introduction

Bronchopulmonary dysplasia (BPD) is one of the most frequent chronic diseases of premature infants, causing ongoing respiratory morbidity and mortality [1]. An imbalance between proteases and protease inhibitors seems to contribute to the pathogenesis of new BPD [4]. Concerning BPD, an adequate AAT elastase inhibitory activity has been demonstrated in the airways of a new BPD baboon model but not in the severe BPD one [6]. The same authors performed a treatment with a catalytic antioxidant in “severe BPD” baboon obtaining an increase of AAT elastase inhibitory activity. This result suggested that the pulmonary outcomes in animal models of “severe BPD” could be prevented by the oxidative inactivation of AAT due to antioxidant therapy

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call