Abstract

Diverse chemical and physical agents can alter cellular functions associated with oxidative metabolism, thus stimulating the production of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) in planktonic bacterial physiology. However, more research is necessary to determine the precise role of cellular stress in biofilm. The present study was designed to address the issues of Staphylococcus aureus biofilm formation with respect to the generation of oxidative and nitrosative stress. We studied three pathogenic S. aureus clinical strains and an ATCC strain exposed to a different range of culture conditions (time, temperature, pH, reduction and atmospheric conditions) using quantitative methods of biofilm detection. We observed that cellular stress could be produced inside biofilms, thereby affecting their growth, resulting in an increase of ROS and RNI production, and a decrease of the extracellular matrix under unfavorable conditions. These radical oxidizers could then accumulate in an extracellular medium and thus affect the matrix. These results contribute to a better understanding of the processes that enable adherent biofilms to grow on inert surfaces and lead to an improved knowledge of ROS and RNI regulation, which may help to clarify the relevance of biofilm formation in medical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.