Abstract

We report here the unexpected finding that recombinant or hepatic microsomal NADPH-cytochrome P450 reductase catalyzes the oxidative deformylation of a model xenobiotic aldehyde, 2-phenylpropionaldehyde, to the n-1 alcohol, 1-phenylethanol, in the absence of cytochrome P450. The flavoprotein and NADPH are absolute requirements, and the reaction displays a dependence on time and on NADPH and reductase concentration. Not surprisingly, the hydrophobic tail of the flavoprotein is not required for catalytic competence. The reductase domain of neuronal nitric oxide synthase is about 30% more active than P450 reductase, and neither flavoprotein catalyzes conversion of the aldehyde to the carboxylic acid, by far the predominant metabolite with P450s in a reconstituted system. Reductase-catalyzed deformylation is unaffected by metal ion chelators and oxygen radical scavengers, but is strongly inhibited by catalase, and the catalase-mediated inhibition is prevented by azide. These results, together with observed parallel increases in 1-phenylethanol and H 2O 2 formation as a function of NADPH concentration, are evidence that free H 2O 2 is rate-limiting in aldehyde deformylation by the flavoprotein reductases. This contrasts sharply with the P450-catalyzed reaction, which is brought about by iron-bound peroxide that is inaccessible to catalase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.