Abstract

A series of FeOx/Ti-MCM-41 mesostructured catalysts were synthesized and characterized by the X-ray diffraction (XRD), N2 adsorption-desorption isotherms, transmission electron microscopy (TEM), and Mössbauer spectroscopy. The surface reducibility and acidity of the catalysts were measured by temperature-programmed reduction of hydrogen (TPR-H2) and temperature-programmed desorption of ammonia (TPR-NH3) methods. Incorporating Ti4+ in the MCM-41 framework and loading Fe2O3 in the surface of the catalysts would create the acid sites and enhance the surface oxygen reducibility. Most of Fe3+ ions were highly dispersed on the surface and some were inserted into the framework of the support with different structural environments. The amount of the Fe3+ ions locating around the structural defects increased as the Fe content increased. In a biphasic reaction system (n-hexadecane/acetonitrile), the oxidation/elimination of dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) could correlate perfectly with the surface acidity and the amount of iron ions around the structural defects of the catalysts. The reactivity of sulfur compounds decreased with increasing of the steric hindrance, showing an order as: DBT>4-MDBT>4,6-DMDBT. In the presence of catalyst and oxidant, the polar/non-polar biphasic reaction system developed herein could effectively oxidize the sterically hindered sulfur compounds and simultaneously extracted the produced sulfones from oil phase into polar phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.