Abstract

When an all-benzenoid nanographene is linearly unzipped into oxygen-joined fragments, the oxidized benzenoid rings (aromatic sextets) selectively adopt the low-spin (DeltaS = 0) or high-spin conformation (DeltaS = 1) to yield the thermally most stable isomer. The selection of the conformation depends simply on the position of the aromatic sextets: the inner ones prefer the high-spin conformation, whereas the peripheral ones prefer the low-spin conformation. Therefore, the resulting most stable isomer has a total spin whose value equals the number of inner aromatic sextets (n(i)) along the oxidizing line. The nanographene fragments contained in this isomer have a ferromagnetic spin coupling. Due to the tautomerization between the high-spin and low-spin conformations, there also exist other possible isomers with higher energies and with spins at ground state ranging from 0 to (n(i) - 1). The rich geometrically correlated spins and the adjustable energy gaps indicate great potential of the graphene oxides in spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call