Abstract

Oxidation treated carbon materials for exploiting highly efficient and stable loaded catalysts have been proven to be valid. In this work, the surfaces of carbon aerogels (CA) were functionalized with different oxidizing agents, i.e., H2O2 and HNO3. A series of Ru-supported catalysts on carbon aerogels (CA) with/without functionalized were prepared by the impregnation strategy. The impact of oxidation treatment on the texture features of carbon aerogels, the types and contents of formed surface oxygen-containing functional groups, the metal-support interactions and the Fischer-Tropsch synthesis reaction performances of the catalysts were systematically investigated. Our results showed that Ru/CA catalyst without oxidation treatment displayed the highest initial activity but the poor stability, while the Ru/CA-H2O2 catalyst exhibited excellent activity and C5+ selectivity. The oxidation treatment increased the carbon aerogels defects, thereby broadening the specific surface area. The increased content of oxygen-containing functional groups on the surface enhanced the interaction between the support and Ru nanoparticles and improved the stability of the catalyst. Nevertheless, the excessive oxygen-containing functional groups on the surface decreased the activity and the C5+ selectivity of carbon aerogels-loaded Ru catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call