Abstract

In this work, SnO2 thin films were prepared by thermal oxidation of Sn in an oxygen-rich atmosphere. The Sn thin films were deposited onto Si (100) substrates by vacuum evaporation, and the properties of the oxide films were investigated as a function of the oxidation temperature. The x-ray diffraction patterns showed that the obtained films have a polycrystalline structure with a preferential orientation along the (101) plane. The film oxidized at 500°C was not completely oxidized. The grain growth of the films was controlled by the pore mobility process. The UV–Vis reflectance spectra revealed an increase in both the refractive index and density of the films, reflecting the densification of the investigated films. The band gap energy decreased from 3.78 eV to 3.62 eV, caused by an increase in charge carrier density due to increased grain size. The increase in film thickness can be explained by the upward diffusion of tin atoms into the oxide film surface and the downward diffusion of oxygen atoms into the metal. The increase in the O/Sn ratio, determined from Rutherford backscattering spectroscopy, indicated enhanced material stoichiometry. Electrical resistivity decreased from 9.7 × 10−3 Ω cm to 1.7 × 10−4 Ω cm, which was attributed to the increased grain size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call