Abstract

The oxidation state ( OS ) formalism is a much-appreciated good in chemistry, receiving wide application. However, like all formalisms, limitations are inescapable, some of which have been recently explored. Providing a broader context, we discuss the OS and its interpretation from a computational perspective for transition metal (TM) complexes. We define a broadly applicable and easy-to-use procedure to derive OS s based on quantum chemical calculations, via the use of localized orbitals, dubbed the Intrinsic OS . Applying this approach to a cobalt complex in five OS s, isolated by Hunter and co-workers (Inorg. Chem.2021, 60, 17445), we find that the calculated Intrinsic OS matches the formal OS , consistent with the experimental characterization. Through analysis of the delocalized orbitals, the ligand field of the Co(III) complex is found to be "inverted", despite every cobalt-ligand bond being classically dative from the localized perspective-a bonding scenario very similar to that of [Cu(CF3)4]-. This is not atypical but rather a natural consequence of these metals bonding in the high-valent region, and we propose a more restrictive definition of (locally) inverted bonding. Additionally, two bonding descriptors within the Intrinsic Bonding Orbital (IBO) framework (σ-gain and π-loss) are introduced, which enable facile quantification of electron-sharing covalency across a broad range of TM complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.