Abstract

In an effort to examine the role of electronic structure and oxidation states in potentially modifying intramolecular vibrational dynamics and intermolecular solvation, we have used 2D-IR to study two distinct oxidation states of an organometallic complex. The complex, [1,1'-bis(diphenylphosphino)ferrocene]tetracarbonyl chromium (DPPFCr), consists of a catalytic diphenylphosphino ferrocene redox-active component as well as a Cr that can be switched from a Cr(0) to a Cr(I) oxidation state using a chemical oxidant in dichloromethane (DCM) solution. The DPPFCr(I) radical cation is sufficiently stable to investigate with 2D-IR spectroscopy, which provides dynamical information such as vibrational relaxation, intramolecular vibrational redistribution, as well as solvation dynamics manifested as spectral diffusion. Our measurements show that the primarily intramolecular dynamical processes-vibrational relaxation and redistribution-differ significantly between the two oxidation states, with faster relaxation in the oxidized DPPFCr(I) radical cation. The primarily intermolecular spectral diffusion dynamics, however, exhibit insignificant oxidation state dependence. We speculate that the low nucleophilicity (i.e., donicity) of the DCM solvent, which is chosen to facilitate the chemical oxidation, masks any potential changes in solvation dynamics accompanying the substantial decrease in the 2.5 D molecular dipole moment of DPPFCr(I) relative to DPPFCr(0) (7.5 D).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.