Abstract

An original route to develop an advanced class of microgel emulsifiers containing stimulable metallo-supramolecular instead of frozen covalent cross-links is reported. The poly(N-isopropylmethacrylamide) (PNiPMAM) chains of the microgel are connected by iron(II)-bis(terpyridine) coordination supramolecular complexes that can be cleaved on demand, leading to unique properties both at interfaces and in volume. The microgel synthesis is not demanding, and the characterization of its supramolecular structure can be precisely achieved by standard methods. Singularly, interfaces of an oil-in-water emulsion stabilized by the supramolecular particles can be triggered at the molecular scale by oxidation of Fe(II) to Fe(III), leading to emulsion breaking. In bulk, we show that a microgel dispersion can indeed be transformed into a polymer solution upon oxidation. Our study paves the way to the discovery of unusual microgel properties as our proof-of-concept can be extended to different supramolecular chemistry and architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.