Abstract

Two aluminide layers (additive and interdiffusion) were deposited on a turbine blade made of ŻS6K superalloy by means of VPA and CVD methods. The additive and interdiffusion layers obtained by the VPA method consist of the NiAl phase and some carbides, while the additive layer deposited by the CVD method consists of the NiAl phase only. The residual stresses in the aluminide coating at the lock, suction side, and pressure side of the blade were tensile. The aluminide coating deposited by the CVD method has an oxidation resistance about 7 times better than that deposited by the VPA method. Al2O3 + HfO2 + NiAl2O4 phases were revealed on the surface of the aluminide coating deposited by the VPA method after 240 h oxidation. Al2O3 + TiO2 oxides were found on the surface of the aluminide coating deposited by the CVD method after 240 h oxidation. Increasing the time of oxidation from 240 to 720 h led to the formation of the NiO oxide on the surface of the coating deposited by the VPA method. Al2O3 oxide is still visible on the surface of the coating deposited by the CVD method. The residual stresses in the aluminide coating after 30 cycles of oxidation at the lock, suction side and pressure side of the turbine blade are compressive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.