Abstract

Inherent defect of easy oxidation limited further application of carbon fiber/phenolic resin composites in hostile environments. Herein, a combined strategy of matrix modification and fiber coating was proposed to fabricate a novel ceramizable composite containing Al-coated carbon fibers and Ti3SiC2 toward thermal protection materials (TPM), which offered a promising solution to challenge facing long-term thermal protection and load-bearing subject to severe oxidation corrosion and ablation in hypersonic vehicle applications. Oxidation resistance, mechanical strength evolution, phase evolution, microstructure evolution and mechanical strength failure mechanism at elevated temperatures were studied based on thermogravimetric analysis, static ablation test, mechanical test, X-ray diffraction analysis, and scanning electron microscopy coupled with energy dispersive X-ray analysis. The resulting composites exhibited outstanding oxidation resistance, with residue yield at 1600 °C and flexural strength at 1400 °C as high as 87.7% and 31.7 MPa, respectively. It was found that dense multiphase ceramics formed by reactions between Ti3SiC2, O2, pyrolytic carbon (PyC) and N2, acted as oxygen barriers and self-healing agents during static ablation. Besides, the resulting composites exhibited satisfactory ablation resistance and the linear ablation rate was as low as 0.00853 mm/s. Furthermore, ablation mechanisms were revealed based on phase identification, microstructure characterization and thermodynamic calculation analysis. It was revealed that multiphase ceramics composed of PyC, Al coatings, Ti3SiC2, TiC, Al2OC and AlB2 contributed great to the ablation resistance during oxyacetylene ablation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call